
As mentioned in International Conference on Harmonisation
publications, linearity is a principal parameter in method validation.
The most popular statistical tool used is linear least-squares
regression. Contrary to what is still very often practiced, the
correlation coefficient can in no way be considered as an indicator of
the fit quality. There is in fact a test called the “lack-of-fit test” that
enables one to answer the question, “Is the linear model adapted to
the calibration curve?”. However, this test can give erroneous
conclusions when, at each level, several sources of variation for the
response are influent. It often occurs in high-performance liquid
chromatography, as shown in a following example, where the
calibration curve is obtained from repeated injections of repeated
dilutions of a parent solution. The lack-of-fit test rejected linearity,
although it was at least questionable. In fact, the reason for a
discrepancy of this kind lies in the presence of a double source of
variation: injection and dilution. It is possible to overcome the
problem by mixing a nested ANOVA with the standard least-square
linear regression. As shown in an example, implementing this
methodology for data processing allows one not only to carry out an
unbiased lack-of-fit test but also give estimates of the dispersion
introduced respectively by the preparation and the injection.

Introduction

Today, each analytical method must be fully validated before
being used in a routine. Several publications deal with the subject
(1–5), especially in high-performance liquid chromatography
(HPLC) (6–10). Linearity of response against analyte quantity is
one of the main concerns of validation. In the field of HPLC with
ultraviolet (UV) detection, the analyst must ensure that the area
(or height) of the peaks is a linear function of the concentration
in the range defined for the analysis. Generally, the experiment
consists of analyzing samples of different concentration levels

obtained by dilution from a parent solution. A common approach,
as mentioned in the latest International Conference on
Harmonisation (ICH) recommendations (1), is to process data by
least-square regression. Then, it allows one to carry out statistical
tests, generally on the intercept and slope. The correlation coeffi-
cient measures the proportion of the variation around the mean
explained by the model. Therefore, it is not convenient to test the
adequacy of the latter (i.e., linearity), and its use is thus rightfully
considered inadvisable or at least not sufficient (1,3,5,11).
Nevertheless, it is still current practice to rely solely upon the cor-
relation coefficient (8–9,12–17). However, a lack-of-fit test has
been proposed (16) and is now integrated in several statistical
applications (19–20), but it is not commonly used for at least two
reasons. First, it is not very popular, and few analysts are even
aware of its existence. Second, as will be shown by our example, it
can lead to rejection of the linear model, although it is consider-
ably less obvious when considering the residuals. The reason lies
in the fact that there is more than one source of variation for the
response at each level (generally two: the preparation of the cali-
bration solutions and the injection) that affects the results. After
a brief review of the theoretical basis of the lack-of-fit test, it will
be shown how to combine linear regression with a nested analysis
of variance (ANOVA) to solve the problem. This approach enables
not only the lack-of-fit test to be carried out rigorously, bearing in
mind the current experimental design, but also to give reliable
estimates of the dispersion introduced respectively by the prepa-
ration and the injection. The example will illustrate practically
how to proceed.

Experimental

Definition of the lack-of-fit test
Linear regression

Linear regression is used to estimate the parameters of a linear
model linking a dependent variable Y and an independent variable
X. The model is given by Equation 1.
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Y = β0 + β1X + ε Eq. 1

where ε is the Gaussian variable for the effect of random error,
and β0 and β1 are unknown parameters estimated using the least-
squares method from experimental data (xi, yi) (21). Least-
squares estimates are denoted b0 and b1 and are given in
Equations 2 and 3.

b0 = y– – b1x
– Eq. 3

where x– and y– stand for the xi mean and yi mean, respectively.
From these estimates and for each value xi of x, it is possible to

calculate ŷi, the y value predicted by the model (Figure 1).

ŷi = b0 + b1xi Eq. 4

ANOVA of least-squares regression
The traditional ANOVA table of least-squares regression is given

in Table I. The F test, which consists of comparing the regression
and the error mean squares, is not in any sense a test of linearity.
It is merely a test that allows one to detect whether there is a sig-
nificant relation between the y and x values. Mathematically, it is
strictly equivalent to the t-test on the slope of the regression line.

The lack-of-fit test
The lack-of-fit test is the one that enables one to check whether

the linear model is suitable for the set of experimental data. For
each level xi, it requires several (at least two) experimental y

values denoted yia. The aim is to determine whether the disper-
sion of the level means y–i around the regression line can be
explained by the dispersion inside the levels. If this is the case,
then linearity cannot be rejected. The situation is illustrated by
Figure 2.

Numerically, it is merely a decomposition of the error sum of
squares of the regression into two terms. The first corresponds to
the lack of fit, whereas the second is a pure error term, as shown
in Equation 5.

The corresponding ANOVA table is given in Table II. The statis-
tical test to be used is an F test. If the linear model is appropriate,
then q1 and qintra are two independent estimates of the same vari-
ance. The ratio q1/qintra is therefore a Fischer Snedecor variable
with (p – 2) and (n – p) degrees of freedom.

Validity
The conditions of validity of the linear regression (and therefore

of the lack-of-fit test) are that (a) each xi is known exactly (i.e.,
without error) and (b) the data are homoscedastic (i.e., dispersion
on y values does not depend on x values) and there is no prepon-
derant source of variation for the response except the value of x.
A tolerance of a factor 5 in the extreme standard deviations is,
however, mentioned as acceptable in the literature (22).

Neglecting these hypotheses is, unfortunately, current practice
and often leads to ambiguous situations or erroneous conclu-
sions.
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b1 =
Σi(xi – x–)2 Eq. 2Σi(xi – x–)(yi – y–)

Σ
ia

(yia - ŷi)2 = Σ
i

(y–i - ŷi)2 + Σ
ia

(yia - y–i)2 Eq. 5{ { {

Qr Q1 Qintra

Table I. ANOVA Least-Squares Regression Table*

Source of Sum of Degrees of
variation squares freedom Mean square

Regression 1

Error n – 2

Total n – 1

* n = number of experimental data used for the regression.

Figure 1. Predicted and experimental data. Figure 2. Principle of lack of fit test.

Ql = b1
2Σ

i
(xi – x–)2

Qr = Σ
i

(yi – ŷi )
2

QT = Σ
i
(yi – y–)2

ql = b1
2Σ

i
(xi – x–)2

qr = Qr/n – 2

Table II. Lack-of-Fit ANOVA Table*

Source of Sum of Degrees of
variation squares freedom Mean square

Lack of fit p – 2

Pure error n – p

Total error n – 2

* p = number of levels.

Σ
i
(y–i – ŷi )

2

Σ
i
(yia–y–i )

2

Σ
iα
(yia – ŷi )

2

q1 = Q1/p – 2̂

qint ra = Qint ra/n – p



Limitation of the lack-of-fit test
In practice, the hypothesis of linearity can be rejected by the

lack-of-fit test, whereas an examination of the residuals indicates
clearly that the relation is probably linear. It is quite frequent in
HPLC with UV detection. Paradoxically, it is more frequent the
better the repeatability of the HPLC device. The following
example is a typical illustration of what can happen.

Experimental
The linearity study chosen was carried out on the analysis of

Spiramycin, an antibiotic developed by Rhône-Poulenc Rorer
(Centre de Recherche de Vitry Alfortville, France). This product
has already been the subject of other studies (23–25).

The method used isocratic elution reversed-phase chromatog-
raphy with a Nucleosil C8 120Å 3-µm (200 × 4.6 mm) column.
The mobile phase was a mixture of acetonitrile (HPLC grade, J.T.
Baker, Phillipsburg, NJ) and phosphate buffer pH 2.2 (30:70, v/v).
The pump was a Varian (Les Ulis, France) 9012, the flow rate of
which was set at 0.8 mL/min. The injector was a Waters (St.
Quentin, France) 715 Ultra Wisp with a cooling system set at 4°C.
The injection volume was 20 µL. The detector was an adjustable
wavelength Varian 2050 set at 232 nm. The column temperature
was maintained at 23°C using an Alltech (Deerfield, IL) Water
Jacket and a Bioblock Polystat 5. Acquisition and integration were
performed on a personal computer with the Shimadzu
(Courtaboeuf, France) Chromatography Data System Class-Vp.
The mobile phase was recycled with an Ecosaver (Touzart &
Matignon, Courtaboeuf, France).

Each sample was prepared by dilution from a parent solution:
125 mg of Spiramycin in 100 mL of a mixture of acetonitrile
(HPLC grade, J.T. Baker) and Milli-Q (Millipore, Milford, MA)
water (30:70, v/v). Rather than using flasks and pipettes, we chose
to use a Hamilton (Reno, NV) Microlab 530B diluter. The exact
protocol is not included, because this is not the purpose of the pre-
sent paper. Nevertheless, preliminary experiments showed that

diluter accuracy and repeatability were at least as good as, or
better than, those of an experienced handler using standard flasks
and pipettes (26).

Six levels of concentration were chosen, arbitrarily denoted 25,
50, 75, 100, 125, and 150. For each level, 3 independent samples
were prepared, and each sample was injected twice. The 100 level
corresponds to a chromatographic peak with a maximum
absorbance of approximately 0.4 AU.

If we call Li the ith preparation of the L level and B a blank, the
sequence can be written as follows: B/251/501/751/1001/1251/1501/
B/252/502/752/1002/1252/1502/B/253/503/753/1003/1253/1503/B/251
/501/751/1001/1251/1501/B/252/502/752/1002/1252/1502/B/253/503/
753/1003/1253/1503.

Results
The response chosen was the area of the peak of Spiramycin I,

the main component. Numerical data obtained (in arbitrary inte-
gration units) are shown in Table III.

Data processing
First, we chose to process the data in a traditional way (i.e.,

without taking into account the preparation factor). Calculations
were achieved using the least-square method on a personal com-
puter with the JMP software (SAS Institute, Cary, NC).

A plot of experimental data, together with the regression line, is
given in Figure 3. Estimated parameters of the regression line are
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Figure 3. Plot of experimental results together with regression line.

Table III. Area of the Spiramycin 1 Peak

Level Preparation First injection area Second injection area

25 1 2457524 2391693
25 2 2450828 2391252
25 3 2444638 2360293
50 1 4693194 4844527
50 2 4835596 4878092
50 3 4809226 4722253
75 1 7142763 7182769
75 2 7135550 7173920
75 3 7216871 7076359
100 1 9496553 9537788
100 2 9405825 9439201
100 3 9609870 9707734
125 1 12031958 12027037
125 2 11935594 11930086
125 3 12154132 12096462
150 1 14298064 14396607
150 2 13964716 14221039
150 3 14283992 14042220

Table IV. ANOVA Table for Regression on Experimental
Data

Source of Sum of Degrees of
variation squares freedom Mean square F ratio

Regression Q1 = 5.90 × 1014 1 q1 = 5.90 × 1014 49037
Error Qr = 4.09 × 1011 34 qr = 1.20 × 1010 Prob>F
Total QT = 5.91 × 1014 35 < 0.0001



b1 = 94857 and b0 = 55207. The ANOVA table of the regression is
given in Table IV.

The high F ratio value and the low probability that it occurred
only by chance indicates that there is in fact a relation between y
and x. This test is not able to state if this relation is linear or not.
Only the lack-of-fit test, the table for which is given in Table V, can
answer this point.

With an α level of 5%, the hypothesis of linearity must be
rejected. Effectively, the value of the F ratio is too high (i.e., the
probability that such a value occurred by chance is too low to con-
sider the hypothesis of linearity as acceptable). Nevertheless, an
examination of the residuals of the regression (yi – ŷi) (Figure 4)
does not confirm the conclusions of the lack-of-fit test. No devia-
tion from linearity seems obvious, because residuals are rather
randomly distributed around zero.

Apparently, the lack-of-fit test is in contradiction with a visual
examination of the residuals. If data homoscedasticity seems to be
not strictly respected, that cannot explain alone such an observa-
tion. Effectively, standard deviations vary in a factor of 5 or less,
which can be considered as tolerable (22). On the other hand, it
must be remembered that in the former approach, the prepara-

tion factor had not been taken into account. Does this factor
introduce a dispersion that cannot be neglected in comparison
with those of injection (intrinsic dispersion inherent to the HPLC
device), and how would the conclusions be modified if this new
source of variation was introduced in the model? In other words,
how is it possible to take into account the presence of both gen-
uine replicates and repeated injections (27) in the data processing
of the experimental design of an HPLC linearity study?

Separation between preparation and injection
effects: another approach to test linearity

It had been previously shown in an example that the traditional
lack-of-fit test could not be well adapted to assert the linearity of
UV detection of an HPLC method because, in fact, its validity con-
ditions were not respected within the actual experimental design.
If it is possible to bypass the difficulty with a single injection per
preparation, this solution appears not fully satisfactory, because
in this case, it is no longer possible to make a difference between
preparation and injection dispersion. We will henceforth show
theoretically and practically how to proceed to overcome the
problem without any loss of information.

Theoretical approach
Any variation in x due to the preparation step induced a corre-

sponding variation in y. Because a random effect on x values
occurring during the preparation of calibration solutions could
be neither measured nor quantified, it would therefore be treated
as an additional source of variation on y. So, the aim of the pro-
posed modification is to compare the dispersion of the level
means with the dispersion between preparations and no longer
with an overall dispersion including both injection and prepara-
tion. The lack-of-fit test conducted with this approach will be
called the “modified lack-of-fit test”. Figure 5 corresponds to
Figure 2 when differences between preparations are taken into
account. y–ij is the mean for the jth preparation of level i.

Mathematically, the pure error sum of squares of the traditional
lack-of-fit test (Table V) is separated into two terms. The first cor-
responds to the dispersion introduced by the preparation of the
samples, and the second stands only for the injection repeata-
bility. Consequently, the entire decomposition of the sum of
squares is given in Equation 6.

The corresponding table is given in Table VI.
First, the influence of the preparation factor is to be tested. The

statistical test used is an F test. If the hypothesis of noninfluence
of the preparation factor is not to be rejected, then qprep and qintra
are two independent estimates of the same variance. The ratio
qprep/qintra is therefore a Fischer Snedecor’s variable with (p[r – 1])
and (n – pr) degrees of freedom. The way to test the appropriate-
ness of the linear model is then different, whether the preparation
factor is found to be influential or not. If the preparation factor
is not influential, the lack-of-fit F test uses the ratio q1/qintra,
which is a Fischer Snedecor’s variable with (p – 2) and (n – pr)
degrees of freedom in the case of appropriateness of the linear
model. Otherwise, the lack-of-fit F test uses the ratio q1/qprep,
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Figure 4. Plot of the regression residuals.

Figure 5. Preparation taken into consideration.

Table V. Lack-of-Fit Table for Experimental Data

Source of Sum of Degrees of
variation squares freedom Mean square F ratio

Lack of fit 1.25 × 1011 4 q1 = 3.13 × 1010 3.31
Pure error 2.84 × 1011 30 qintra = 9.47 × 109 Prob > F
Total error 4.09 × 1011 34 0.023
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which is a Fischer Snedecor’s variable with (p – 2) and (p[r – 1])
degrees of freedom in the case of appropriateness of the linear
model.

With such changes, the difficulty inherent to the multiplicity of
sources of variation for the response is bypassed. The lack-of-fit
test actually tests the lack of fit. If linearity is rejected, either the
response is nonlinear (saturation phenomena), or the accuracy of
the x value must be questioned.

Experimental
The same set of data as in the Limitation of the lack-of-fit test

section is used, but data processing is carried out using the mod-
ified lack-of-fit test methodology. The ANOVA table is given in
Table VII.

The influence of the preparation factor must be tested first. The
observed value for the F ratio is 1.45 · 1010/6.10 · 109 = 2.34, and
the probability that a Fischer Snedecor’s variable with 12 and 18
degrees of freedom takes a value greater than 2.34 is 4.71%. With
an α level of 5%, the preparation factor can be considered signif-
icant. Consequently, to test the lack of fit, the F ratio q1/qprep must
be used. The observed value is 3.13 · 1011/1.45 · 1011 = 2.16, and
the probability that a Fischer Snedecor’s variable with 4 and 12
degrees of freedom takes a value greater than 2.16 is 13.55%.
With an α level of 5%, the hypothesis of appropriateness of the
linear model cannot be rejected; in other words, there is no
problem with the linearity.

To determine the dispersion introduced respectively by the
preparation and the injection, it is necessary to calculate esti-
mates of their respective standard deviation (SD), or better, of
their relative standard deviation (RSD, normalization by the value
of the response at the 100 level). The residual SD, corresponding
to the injection, is given by the square root of the pure error mean
square. Numerically, residual SD = 78124 and residual RSD =

0.82%. The preparation SD is given by Equation 7.

qprep = SDr
2 + 2SDprep

2 Eq. 7

Numerically, preparation SD = 64864 and preparation RSD =
0.68%.

As shown in this example, by taking into account the possible
influence of the preparation on the results’ dispersion, the modi-
fied lack-of-fit test prevents erroneous conclusions. So, validation
notes can be less ambiguous, because approximate explanations
are no longer necessary to justify that response is linear despite
the rejection of the linear hypothesis by the lack-of-fit test.
Moreover, the analyst can, in the same time, give estimates of the
dispersion introduced respectively by the preparation and the
injection. Such information is of great interest, because it enables
an optimization of the future routine injection sequence.

Conclusion

It was shown that linearity of a response could be confirmed
rigorously using a test described in-depth in statistical treatises
and called the “lack-of-fit test”. However, problems could arise
when, as shown in the example, an additional source of variation
was involved but not taken into consideration. It could, for
example, be the dispersion resulting from the dilution of a parent
solution. To overcome this difficulty, a modified lack-of-fit test
was developed by mixing a nested ANOVA with traditional regres-
sion. The efficiency of this methodology was demonstrated,
because it not only avoided erroneous rejection of the linearity
hypothesis but also provided estimates of the dispersion of each
source of variation involved. At first sight, our approach could
seem fastidious, because it involves complex calculations.
However, the use of computers and statistical software substan-
tially reduces the validity of this observation. The present study
also clearly underlines the need to proceed with repeated prepa-
rations, because a single preparation per level and repeated injec-
tions were highly likely to produce discrepancies. One could still
object that repeated injections are not necessary, but it is bad
policy not to extract the maximum of information from an anal-
ysis method, and full knowledge of each dispersion characteristic
of the method is an uncontestable asset for any further develop-
ment. In any event, the methodology we have proposed here is a
new tool that can be used by analysts for method validation.
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